natural logarithm - перевод на голландский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

natural logarithm - перевод на голландский

LOGARITHM TO THE BASE OF THE MATHEMATICAL CONSTANT E
Natural logarithm integral condition; Integrating the derivative of the logarithm of a function; Natural log; Natural logarithms; ㏑; Base-e logarithm; Ln(x); Ln x; Log natural; Base e; Natural Log; Natural Logarithm; Hyperbolic logarithms; Logarithmus naturalis; Base e logarithm; Logarithm of the base e; Natural logarithm plus 1; Natural logarithm plus 1 function; Lnp1; Ln1p; Ln+1; Logh (mathematics); Logh (function); Log1p; Log1p(x); Lnp1(x); Ln1p(x); LN1+X; LN(1+X); Ln(1+x); Natural system of logarithms; Natural logarithm near one; Natural logarithm plus one; Natural logarithm plus one function; Natural logarithm near 1; Ln(1 + x); Ln(x + 1); Ln(x+1)
  • 1}}, the area taken to be negative.
  • thumb
  • The Taylor polynomials for ln(1 + ''x'') only provide accurate approximations in the range −1 < ''x'' ≤ 1. Beyond some ''x'' > 1, the Taylor polynomials of higher degree are increasingly ''worse'' approximations.

natural logarithm         
n. natuurlijke logaritme, logaritme die een irrationaal getal "e" als basis heeft
common logarithm         
  • Page from a table of common logarithms. This page shows the logarithms for numbers from 1000 to 1509 to five decimal places. The complete table covers values up to 9999.
  • e}}) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation.
THE LOGARITHM WITH BASE 10, FORMERLY WIDELY USED FOR CALCULATIONS
Logarithm table; Briggsian logarithm; Briggs' logarithm; Decadic logarithm; Briggesian logarithms; Base-10 logarithm; Common log; Log10; Log 10; Briggsian logarithms; Logarithm of the base 10; Decimal exponent; Common logarithms; Decadic logarithms; Lg (x); Decimal logarithm; Decimal logarithms; Base 10 logarithm; Mantissa (logarithm); Logarithmus generalis; Briggs logarithm; Logarithmus decimalis; Logarithmus decadis; Base-ten logarithm; Characteristic (exponent notation); Base ten logarithm; Lg10; Characteristic (logarithm); Characteristic (common logarithm)
algemene logaritme
common logarithms         
  • Page from a table of common logarithms. This page shows the logarithms for numbers from 1000 to 1509 to five decimal places. The complete table covers values up to 9999.
  • e}}) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation.
THE LOGARITHM WITH BASE 10, FORMERLY WIDELY USED FOR CALCULATIONS
Logarithm table; Briggsian logarithm; Briggs' logarithm; Decadic logarithm; Briggesian logarithms; Base-10 logarithm; Common log; Log10; Log 10; Briggsian logarithms; Logarithm of the base 10; Decimal exponent; Common logarithms; Decadic logarithms; Lg (x); Decimal logarithm; Decimal logarithms; Base 10 logarithm; Mantissa (logarithm); Logarithmus generalis; Briggs logarithm; Logarithmus decimalis; Logarithmus decadis; Base-ten logarithm; Characteristic (exponent notation); Base ten logarithm; Lg10; Characteristic (logarithm); Characteristic (common logarithm)
gemene logaritme

Определение

natural logarithm
¦ noun Mathematics a logarithm to the base e (2.71828 ...).

Википедия

Natural logarithm

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, loge x, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

The natural logarithm of x is the power to which e would have to be raised to equal x. For example, ln 7.5 is 2.0149..., because e2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e1 = e, while the natural logarithm of 1 is 0, since e0 = 1.

The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many other formulas involving the natural logarithm, leads to the term "natural". The definition of the natural logarithm can then be extended to give logarithm values for negative numbers and for all non-zero complex numbers, although this leads to a multi-valued function: see Complex logarithm for more.

The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities:

e ln x = x  if  x  is strictly positive, ln e x = x  if  x  is any real number. {\displaystyle {\begin{aligned}e^{\ln x}&=x\qquad {\text{ if }}x{\text{ is strictly positive,}}\\\ln e^{x}&=x\qquad {\text{ if }}x{\text{ is any real number.}}\end{aligned}}}

Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition:

ln ( x y ) = ln x + ln y   . {\displaystyle \ln(x\cdot y)=\ln x+\ln y~.}

Logarithms can be defined for any positive base other than 1, not only e. However, logarithms in other bases differ only by a constant multiplier from the natural logarithm, and can be defined in terms of the latter, log b x = ln x / ln b = ln x log b e {\displaystyle \log _{b}x=\ln x/\ln b=\ln x\cdot \log _{b}e} .

Logarithms are useful for solving equations in which the unknown appears as the exponent of some other quantity. For example, logarithms are used to solve for the half-life, decay constant, or unknown time in exponential decay problems. They are important in many branches of mathematics and scientific disciplines, and are used to solve problems involving compound interest.